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Abstract

Data items are often associated with a location in which they are present or collected, and their
relevance or influence decays with their distance. Aggregate values over such data thus depend on the
observing location, where the weight given to each item depends on its distance from that location. We
term such aggregation spatially-decaying.

Spatially-decaying aggregation has numerous applications: Individual sensor nodes collect readings
of an environmental parameter such as contamination level or parking spot availability; the nodes then
communicate to integrate their readings so that each location obtains contamination level or parking
availability in its neighborhood. Nodes in a p2p network could use a summary of content and properties
of nodes in their neighborhood in order to guide search. In graphical databases such as Web hyper-
link structure, properties such as subject of pages that can reach or be reached from a page using link
traversals provide information on the page.

We formalize the notion of spatially-decaying aggregation and develop efficient algorithms for fun-
damental aggregation functions, including sums and averages, random sampling, heavy hitters, quantiles,
and norms.

1 Introduction
In many applications, data items are associated with locations on some network. Data present at one lo-
cation is relevant to other locations, yet, this relevance or influence decreases with the distance between
the locations. Thus each location views and aggregates the data through a different distribution, where the
weight given to each item decreases with its distance. This dependence on the distance is quantified by a
decay function, which is a non-increasing function. Some natural decay functions are threshold functions
(BALL ), where items in the -neighborhood have uniform weights (and other items have weight), Expo-
nential decay, where the weight decreases exponentially with the distance, and Polynomial decay, where the
weight decreases polynomially with the distance. While global aggregates assigns equal weight to all items,
and result in a single global value, spatially decaying aggregates depend on the decay function used and on
the “observing” location (the location with respect to which the aggregation is performed).

We consider several fundamental aggregation functions: With spatially-decaying sum, each node obtains
an estimate on the sum of the weight times value product over all items. Figure 1 shows an example of a
network with values at each node and the respective decaying sums under the BALL decay function. A
related aggregate, derivable from the sum, is the spatially-decaying average (a weighted average of values of
items). Spatially-decaying random samples are defined with respect to the weight distribution (for example,
for a BALL decay function a node obtains a uniform random sample from its -neighborhood). Using
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Figure 1: A network where each node is labeled by the value of the item it carries and the sum of values in
its 2-neighborhood (BALL decaying sum).

random sampling as a building block we obtain algorithms for the spatially-decaying variants of other basic
aggregation problems such as approximate frequency counts [35] and quantiles [37, 36]. It is also interesting
to compute aggregates over the set of distinct elements (set of distinct values over items with nonzero
weight): We consider the counting, multiplicity (frequency) of a random distinct element, random sampling
aggregates, and approximate spatially-decaying norms for (of vectors where items constitute
spatially-decaying updates to certain coordinates [15, 12]).

Our model and algorithms support a wide range of applications, that include distributed or centralized
aggregation, one-time computation or periodic to support continuous queries. The desired result of the
aggregation process can be a single numeric result at each node or a summary that enables a node to respond
locally to aggregation queries for different decay functions or aggregate functions. Our algorithms can be
modified to perform aggregations over the set of reverse nearest neighbors (RNN). Such aggregates are of
interest for decision support and had been studied on stored data sets and on data streams [30, 31]. In these
applications, some locations function as “servers” to all other locations, where each location is served by its
closest server. Thus, the set of RNNs of a node is its potential set of clients if it becomes a server. Statistics
(such as averages, quantiles, random selections, or variance) over these sets for different points can support
decisions whether to turn a point into a server.

Applications Our work is motivated by several application areas (both distributed and centralized):

Sensor networks: Sensor networks consist of many individual sensor nodes, each collecting data
on its environment, for example, temperature, density of some contaminant, identities of passing
vehicles, or availability of a parking spot (see, e.g.[14, 34, 13]). Each reading by one sensor is relevant
to other locations, but the relevance, for example of an available parking space, decreases with its
distance from the destination [19, 20, 13]. Spatially-decaying aggregation provides each location with
information on their larger neighborhood such as parking availability, average or median temperature,
the number of distinct vehicles passing through, or the median speed of a vehicle. RNN aggregates can
be used to decide when a certain node should start or stop providing some service to its neighboring
nodes. Since power is a limiting factor in sensor nets, it is important that aggregation is performed
efficiently [33, 38]. Since node distribution can be highly irregular [20, 13], it is important to handle
general (or arbitrary planar) topologies.

p2p networks: p2p networks consist of nodes connected via an overlay network. An important
functionality they provide is search, where nodes initiate queries for data that can be present at other
nodes. Some popular p2p systems (such as the Gnutella protocol [10]) deploy flood searching, where
the query is propagated for a fixed number of hops, thus to a neighborhood that includes all nodes that
lie within several hops away. Aggregates over the neighborhood that can be used to tune the efficiency
of the search process include the number of hosts, the total number of (distinct or not) items offered,
the median load or bandwidth of a node, the total number of distinct hosts issuing queries or the total
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number of queries seen by neighboring nodes. The search process can be improved with each node
obtaining a summary of the types of content present in its neighborhood and in the neighborhood of
its immediate neighbors [11].

Graphical databases: Many databases have natural graph form with data present at the nodes. On
hyperlink graphs of Web pages, the context or importance of a Web page is indicated by aggregate
information on pages it links to. For XML documents representing bibliographic data, a context for a
new article or book can be deduced by articles authored by collaborators of its author. For road maps,
it can be useful to obtain for each location the number of restaurants or gas stations in its proximity.
For images, spatially-decaying aggregates can assist in feature extraction.

Challenges: The algorithmic challenge in efficient spatially-decaying aggregations is that aggregate
values are location-dependent. Each data item influences many locations, and it influences these locations
to different extents. The naive approach is to collect, for each node, values of all items that influence the
aggregate (have a nonzero weight) and then compute (from scratch for each node) the aggregate value. This
scales poorly, as it can result in a quadratic running time in a centralized setting, and in quadratic communi-
cation in a distributed setting (for flooding all values to all locations in which they are considered). It is not
hard to see that for many aggregates and decay functions, such quadratic bounds are necessary for obtaining
exact aggregate values. We thus focus on obtaining approximate values. Our approximations are within a
small relative error with very high confidence which suffices for many applications. We develop
novel summarization techniques and obtain algorithms that use per-node communication that depends poly-
logarithmically (rather than linearly) on the size of the influencing data. Our centralized algorithms run in
close to linear time in the size of the data base.

Related work: The spatial decay model generalizes (from an algorithmic perspective but not so much
from an application perspective) the sliding-window model [12, 22] for massive data streams [2] and more
generally, the computation of time-decaying aggregates on massive data streams [9]. In particular, the
threshold (BALL ) decay function generalizes sliding windows. There is a straightforward reduction of a
spatially decaying aggregate query on a path network to a continuous query (of the same aggregate and
under the same decay function) of a time-decaying aggregate (e.g., over a sliding window). Therefore, some
lower bounds from the sliding window model carry over to our model. The spatial decay setting, however,
is considerably more complex and existing techniques for sliding windows and time-decaying aggregates
(such as Exponential Histograms [12] for sums and deterministic summaries [23, 32] for quantiles) do not
seem to extend to the general spatial setting. For example, as Exponentially decaying sum, which is trivial to
maintain efficiently as a time-decay function [27, 17] is not known to be any easier to track than other decay
functions in the spatial-decay model. The spatial decay model also generalizes computation of non-decaying
aggregates in a network (e.g. [38]).

The spatial decay model is conceptually related to the spatial gossip model of Kempe, Kleinberg, and
Demers [29, 28]. The main difference is that in spatial decay, communication is performed along the edges
of an arbitrary graph and the cost we consider is per-node communication cost. In spatial gossip protocols,
communication is performed by contacting random nodes with likelihood that depends on distance, and cost
is measured by the time it takes information to spread. In many applications, including sensor networks and
graphical databases, node and link placement are given and can be rather irregular, thus, it is important to
handle general topologies.

Basic SQL type aggregates over neighborhoods in sensor nets had been recently studied [20, 13]. Desh-
pande et al [13] considered computing aggregates with respect to a fixed partition, which is less natural for
some applications (for example, parking availability within some walking distance of destination is more
relevant than availability in some region that contains the destination (eg “Tribecca”) and excludes closer
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spots that are technically outside the region.); the time-decay equivalent of fixed partitions is using fixed
(rather than sliding) windows.

Ganeriwal et al [19] did not consider the algorithmic efficiency of performing average aggregates, but
proposed Voronoi diagrams as a way of assigning a weight to each sensor reading for a per-area weighted
average aggregation, an issue that is orthogonal to ours.

Our algorithms use techniques we developed in [6] to efficiently sum values over neighborhoods, but
several key new ideas and techniques were necessary in order to handle different aggregate functions, general
decay functions, and to perform the aggregations in a distributed setting.

Our Contributions: We formalize and motivate the notion of spatially-decaying aggregation and develop
algorithmic techniques to efficiently approximate fundamental aggregates. The aggregates we consider in-
clude basic SQL aggregates and had been previously studied over data sets, data streams, or time-decaying
aggregation over data streams, but our spatial model is more complex and general and necessitated devel-
oping and applying a new set of techniques. Our algorithms are nearly optimal (are within polylogarithmic
factors from the lower bounds) and vastly improve over naive approaches.
Outline We organize our presentation as follows. In section 2 we introduce the spatial decay model in
its general setting, define the main problems we study and some natural decay functions. Section 3 is
concerned with computing decaying sums for any decay function. Section 4 focuses on computing MV/D
lists, a basic technique used for computing decaying sums and other aggregate functions. In Section 5 we
develop algorithms for random sampling, Section 6 is concerned with approximate norms, and Section 7
with counting distinct values. Section 8 deals with the important case of the Euclidean metric. In Section 9
we present lower bounds based on the relations between spatial decay and sliding windows, in Section 10
we develop a technique based on Exponential Histograms [12] for computing spatially-decaying sums on
grids, and in Section 11 we explore a unified model which captures both spatial and time decay. Finally,
Section 12 contains an experimental study which compares and evaluates different techniques.

2 Preliminaries
We model the network as a graph , where is the set of nodes, and there is an
edge between two nodes if and only if the two nodes can communicate. We denote the number of edges by
. Edges can have nonnegative lengths associated with them, which are interpreted as distances. We con-

sider both directed and undirected graphs (symmetric or asymmetric distances). We denote by DIST
the distance between two nodes and with respect to the shortest-path metric on the edge lengths. Nodes
in the network have a set of data items , where for each item , is the value of the
item (which can generally be a vector or non-numeric entities) and is the location of the item.

A decay function is a non-increasing function defined for . The decay function deter-
mines the weight of a remote item as a function of its distance. The weight of an item as viewed by a
node is DIST . An aggregate function is a function defined on a multiset of
a value-weight pairs. Given a network with data items , a decay function , and a node
, the spatially-decaying -aggregate at the node is the value of on the multiset .
Our definitions and results can be generalized to the case where items have arbitrary “initial” weights, ,
and the weight of the item at distance is DIST . For simplicity of presentation we
subsequently only treat the case where “initial” item weights are uniform.

We denote the value of an aggregate according to decay function at location by . Our goal
is to obtain (estimates) of the decaying aggregate value at all locations . We seek algorithms
that minimize the amount of communication between nodes, as well as the computation and storage required
at each node. The output of the algorithms we develop here is a summary at each node from which an
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approximate value of the aggregate can be computed for any decay function (which is stronger
and more general than just obtaining values for a particular aggregate and a specific decay function.)

2.1 Aggregate functions

Sum and count The spatially-decaying sum is such that the function sums up the value components
of the pairs in the multiset, each attenuated by the corresponding weight, that is, the spatially-

decaying sum at node is

In the special case where the values are binary, we refer to this aggregate as the spatially-decaying count.
Our algorithms produce a summary at each node, that allows it to obtain with very high confidence, for any
decay function , -approximate estimates, , where is fixed. That is, are such that

for every .

Average A related aggregate is the spatially-decaying average, defined as

The numerator is the spatially decaying sum and the denominator is the spatially-decaying count with re-
spect to the data items . Thus, an approximate decaying average can be obtained from
corresponding approximate decaying sum and approximate decaying count.

Random sampling: For a node and a decay function , is a random variable that returns an
item with probability proportional to its weight, that is, the probability that is drawn is equal to

This can be generalized to weighted sampling with respect to some item weights , where the proba-
bility that is drawn is

Each application of our algorithm results in a summary at each node from which we obtain an item drawn
according to for any decay function . (We allow dependencies between items drawn for different
decay functions and different nodes).

Quantiles: For some and any decay function , can obtain an item with value that is with
confidence a -quantile of the distribution of values over weighted items. Using an existing
folklore technique, an approximate quantile with confidence can be obtained by taking the quantile
of independent random samples.

Frequency counts (heavy hitters): The spatially-decaying frequency counts (heavy hitters) is to find all
elements such that the total relative weight of their occurrences is at least . If an element is reported
then its total weight is at least . Approximate heavy hitters can be computed from independent random
samples [35].
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norms ( ): Each item is an update of a coordinate of a -dimensional vector and is
specified by a triplet . The value specifies the coordinate which this
item updates. The value is the amount by which we increment the target coordinate, and

is the item’s location. The -dimensional vector V associated with location is then
defined by the coordinate values

V

For a fixed , we show how to obtain, using communication per node, at each location ,
a summary of size , such that for any decay function , the node can obtain an approximate value
of V (the norm of V ). One ingredient in our solution is a technique by Indyk [26] for
computing sketches of vectors which preserve approximate differences (for ). The problem
Indyk considered (for non-decaying data streams) was introduced in [15]. For the problem of computing
approximate norms in the sliding windowmodel, Datar et al [12] developed an algorithm which combines
Indyk’s vector sketches with their Exponential Histogram (EH) technique. Their solution, however, does not
seem to generalize to the spatial setting.

Distinct values: For any node and decay function , is the number of
distinct values over items that have a positive weight. We show how each node can obtain a summary such
that for any it can obtain an approximate value of . This problem is equivalent to its restriction
to BALL decay functions, that is, for any given , obtain an approximate number of distinct values
present in the -neighborhood. The techniques extend to the weighted version of the problem where we are
interested in the sum, over applicable distinct elements, of the values of these elements.

We are also able to obtain a random distinct element, that is, a distinct element drawn uniformly at
random, and (approximate) multiplicity of a random distinct element.

Another family of important aggregates is the (approximate) spatially-decaying variance and moments.
In [8] we reduced this problem to computing (approximate) spatially-decaying sums and medians, which
are studied here.

2.2 Decay functions

Our results hold for general decay functions. We list families of decay functions that are of particular
interest: Ball decay functions (BALL ) are parameterized by the radius , and have for
and otherwise. That is, all data values within a distance of have equal importance and all
other data values have weight. Exponential decay (EXPD ) is such that for a parameter ,

. With EXPD, the relative significance of each value decreases exponentially with its distance.
Exponential decay is commonly used in practice for time-decay. One reason for its common use is that
it can be maintained easily as a time-decay function, using a single register (It is not clear, however, if it
is simpler to compute than other decay functions in the spatial setting on general networks). Polynomial
decay (POLYD ) is such that for a parameter , . Polynomial decay is often a natural choice
when a smooth decay is desired and when Exponential decay is too drastic. In many natural graphs (like
-dimensional grids), the neighborhood size increases polynomially with the distance. For such graphs,
EXPD would suppress longer horizons. Many natural effects (for example, electro-magnetic radiation) have
polynomial decrease with distance.
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2.3 Model assumptions

Spatially-decaying aggregation has applications in a centralized setting, where performance is measured by
running time and storage, and distributed settings, where we consider communication and per-node storage.
In a distributed setting we require some mechanism that allows nodes to broadcast along a shortest path
tree. In some settings the complete topology or at least some routing table can be obtained at each node
(see [38]). In other more dynamic settings (such as p2p networks) each node is only aware of its neighbors.

The distance metric can be the shortest path metric defined by the edge-lengths or the Euclidean metric
depending on the application. Edge-length metrics may capture number of network hops (with uniform edge
lengths) or propagation time (where the length of each edge is the sum of the latency and the processing
time at the end nodes). Most of our results are for the shortest path metric. Section 8 considers the Euclidean
metric.

3 Decaying Sum
We will make use of data structures that we term Neighborhood summaries (NH-summaries). These data
structures are maintained in each node of the network and support neighborhood-sum queries: For any given
radius , the NH-summary provides node with approximation of BALL : the total sum
of values of items that are within distance from . Also of interest are -limited NH-summaries, which
support neighborhood-sum queries over -neighborhoods for .

NH-summaries generalize window-summaries on data streams which provide, for each time window
, the sum of values of items observed in the last time units. (Approximate) window summaries can
be obtained using Exponential Histograms (EH) introduced by Datar et al [12]. They use
memory bits for obtaining -approximate estimates for windows up to size .

We next argue that NH-summaries are general enough to support the computation of spatially-decaying
sums under any decay function. The following lemma generalizes a lemma in [9] that shows that in the
context of time decay, window-summaries can be used to compute time-decaying sums under general decay
functions.

Lemma 3.1 NH-summaries allow us to compute spatially-decaying sums under any decay function. If the
summaries are approximate then so are the sums obtained.

Proof. Consider some node , and assume the items are numbered in increasing order of their distance to
. For convenience, assume that distances are integers. Let DIST . Let
Since is non-increasing, for all . (w.l.o.g. we assume that as increases. Thus,

. Otherwise, the problem is composed of a non-decaying problem and a decaying sum
problem where the decay function goes to .) The decaying sum for can be written as:

BALL

Thus, is expressed as a linear combination of BALL decaying sums.

Define a -limited decay function to be any decay function such that (and thus
for all ). Lemma 3.1 can be extended to using -limited NH-summaries to express spatially-decaying
sums for all -limited decay functions.
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When computing the sum, the number of summands can be reduced: When the approximate summary
provide the same estimate BALL of BALL for a range of values , we can “replace” the
sub-sum BALL with the single term BALL .

The data structure that we use for our NH-summaries are Min-value/Distance lists (MV/D lists). MV/D
lists were introduced in [6] in the context of a fast estimation algorithm for neighborhood sizes of nodes in
a graph. MV/D lists are defined with respect to numerical values called ranks, that we associate with each
data item. For data item we use a rank drawn independently at random from a distribution. The MV/D list
of a node is a summary that allows us to retrieve, for any distance , the minimum rank associated with an
item that lies within distance from .

In principle, many distributions can be used to draw the ranks, but a particularly convenient distribution
is the Exponential distribution with parameter . (Items with get ranks .) To intuitively see
why the Exponential distribution works well, observe that an Exponential distribution with parameter is
equivalent to the minimum of Exponential distributions with parameter . Therefore, the rank of an item
with weight “acts” like the minimum of the ranks of items of value .

The following lemma was established in [6].

Lemma 3.2 MV/D lists with ranks drawn independently at random can be used as NH-summaries to an-
swer NH queries. When using (independent) lists, the probability of relative error larger than is

. Therefore, for confidence and relative error at most we need lists.
For a fixed , the probability that relative error exceeds can be made an arbitrarily low constant using a
constant number of MV/D lists and polynomially-low using a logarithmic number of lists.)

With Exponentially-distributed ranks, when we have independent min-ranks, the estimator that gives
us the properties in Lemma 3.2 is divided by the sum of the min ranks. This is a well known unbiased
estimator on the parameter of an Exponential distribution given samples from the distribution.

Lemma 3.2 combined with Lemma 3.1 reduce the problem of obtaining approximate decaying sums
to computing MV/D lists. The communication and storage costs of producing and representing the NH-
summary are determined by the product of the number of MV/D lists ( ), the size of the bit
representation of the ranks ( ), and the number of items or the communication in producing
a single MV/D list.

4 MV/D Lists
As already mentioned, MV/D lists are defined with respect to random ranks associated with the data items.
We denote by the rank associated with item . An MV/D list has the form

where are increasing and are decreasing. We refer to each distance-rank pair as an
element of the list. The MV/D list has the property that for all , the minimum rank found within distance

from is . Clearly the MV/D list of a node allows to retrieve, for any distance ,
the minimum rank associated with an item that lies within distance from . (This can be done in time
logarithmic in the length of the list by binary search.)

For the sake of simplicity, we treat in the sequel the case where there is at most one item in each node
and focus on the decaying count problem, where for every . We will outline how bounds
extend to the more general case.
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We discuss the size of the representation of the ranks that is needed. It is easy to see that
significant bits are sufficient, the representation of the exponent requires for items with binary
values (For non-binary values, is replaced by defined in the sequel).

The following lemma bounds the expected length of the MV/D list. The essence of the proof is that
when ranks are drawn independently at random in a way that with high probability they are all distinct, they
are not correlated with distances from any particular node (The smallest rank is equally likely to be at any
distance from , and so is the second smallest rank, etc.). The MV/D list of contains the prefix minima of
this random permutation. For more details see [6].

Lemma 4.1 When ranks are drawn independently at random, from say an exponential or a uniform distri-
bution, then the expected length of the respective MV/D lists (in terms of number of elements in the list) is

where is the number of nodes (holding nonzero items).

Lemma 4.1 holds for binary item values and at most one such item per node. To extend this lemma to the
general case (of multiple nonnegative-real-valued items in each node), define to be the ratio of the sum
of values of all items to the smallest value of a nonzero item. Lemma 4.1 holds for the general case
if you replace the in the statement of the lemma by .1 Note that if the number of items
is bounded by a polynomial in and each value is integral and bounded by a polynomial in , then is
polynomial in and . Moreover, if we restrict our attention to -limited decay functions
then , and in the derived bounds can be replaced by the respective quantities, or which are the
number, and ratio of sum to smallest values, in a -neighborhood, respectively.

Note that -limited decay functions do not include smooth functions like polynomial or exponential de-
cay, for such functions, all items in the system can influence any location. But when we can restrict ourselves
to -limited decay functions, the saving can be considerable. For example for bounded degree networks the
size of an -neighborhood is bounded by a function of and the communication is thus polynomial in
(polylogarithmic in the size of the -neighborhood and independent of the total number of nodes).

4.1 Computing MV/D lists

We start by reviewing a main-memory algorithm to compute MV/D lists [6] that was used for estimating
neighborhood sizes. We then address interesting and subtle issues regarding the implementation of the
technique of [6] in a distributed setting. For example we relax the rigid order in which nodes announce their
ranks in [6] and show that it costs only a logarithmic factor in time (or communication in our distributed
setting). For each node we denote by the rank of the item present at . If has no item associated
with it, then is infinity.2

The centralized algorithm of Cohen [6] for computing MV/D lists works as follows. All nodes of the
graph (with finite ranks) are sorted according to their ranks. Then, from each node, in increasing order of
ranks, we perform a truncated BFS pass (for uniform edge lengths) or a truncated Dijkstra shortest-paths
pass (for non-uniform edge lengths). We refer to a truncated pass starting at a node as an announcement
made by .

1In this case item draws its rank from an exponential distribution with parameter . This is equivalent to drawing times
from an exponential distribution with parameter and taking the minimum. So think about the draws from the exponential
distribution with parameter made by all nodes together. Order them by distance from , group them into groups of size of

and take the minimum in each group. You get a random permutation of length . The expected number
of prefix minima of this random permutation is . The expected number of items on the MVD list of is at most
since each group corresponding to a prefix minima may be split among the draws in two different nodes and thereby contribute one
more number to the MV/D list of .

2In the more general case where multiple items may present at then would be the minimum among the ranks of the
different items present at .

9



Assume edge weights are all uniform so each announcement is a truncated BFS. The truncated BFS pass
proceeds very much like a complete BFS pass initiated at with the following difference. When the pass
determines for a node that its distance from the announcing node is DIST then we perform one
of the following two cases.

1. If node has not received earlier an announcement from a node ( ) such that DIST
DIST (i.e. all previous announcements were by nodes further from than ) then the MV/D list
of is updated to include the entry DIST and the pass proceeds through the outgoing
edges of .

2. If node has already received an announcement from a node closer than then the pass is halted
from on (but may proceed from other nodes of the same distance, if the MV/D list of those nodes
was augmented).

Each announcement uses at most time, but if truncated then it is potentially much faster. It
is shown in [6] that when nodes make announcements in increasing order of their ranks, the (centralized
version of the) entire computation takes expected time when edge weights are uniform. This
bound stems from the following considerations.

1. The number of announcements propagated by a certain node is exactly the size of its MV/D list. To
see this, observe that since smaller ranks are announced before higher ranks, when an announce-
ment reached a node and provoked an update of its list, this update can not be overridden by future
announcements.

2. The work performed per announcement is proportional to the number of edges incident to the nodes
reached by the announcement.

3. When the ranks are drawn independently at random from say an exponential distribution, then the
expected size of the MV/D list is by Lemma 4.1.

When edge weights are non-uniform we use Dijkstra’s shortest-path algorithm as the announcing process
in an analogous way. That is when we process an announcement from and relax an edge we insert
into the heap only if the distance of the path from to through is shorter than the distance of nodes

of smaller rank to . This way, the number of times a node gets into the heap equals to the length of
its MV/D list. If we implement Dijkstra’s algorithm using Fibonacci heaps [18] then the running time is

. The additional term accounts for the delete-min operations: Each node
gets into the heap once per item in its MV/D list and the corresponding delete-min operations takes
time.

We will next consider the computation of the MV/D lists in a distributed network, where nodes commu-
nicate with each other along the edges of the network. Our main building block remains the “announcement
process” where a node announces its rank to other nodes, but two important issues arise. First we need to
consider the communication involved in making a single announcement. Second we need to consider the or-
der in which announcements are made, since in a distributed setting it is undesirable to sort and synchronize
so nodes are invoked in the order of increasing ranks.

We first consider the distribution of a single announcement in the network. When the topology of the
network is known at all nodes, each node can compute shortest path trees and use these trees to make sure
each announcement follows the shortest path tree of its origin. This way an announcement would require
number of messages that is linear in the number of tree edges incident to visited nodes.

When the topology is not available to the nodes, but distances correspond to propagation delay then each
announcement can be performed via flooding from its source. In this case, a node can deduce its distance
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from the source from the time in which it first gets the announcement. Therefore the number of messages
would be proportional to the number of edges incident to the nodes which the announcement reaches.

If topology is not known and distances do not necessarily correspond to propagation delay, the nodes
can perform a distributed BFS or shortest path computations [1]. BFS can be performed in time
and messages, where is the diameter of the network and a time unit is the time required for a
message to pass through an edge. In our setting, can be replaced by the diameter of the truncated network
and can be replaced by the number of edges that are incident to visited nodes. Shortest paths can be
computed in time and messages, where is the maximum edge length
assuming integral lengths. As for BFS, we can take , and in these bounds to be the respective quantities
for the truncated search.

4.2 Order of announcements

Announcing in increasing rank order makes it possible to charge each message to an item in the MV/D list
of the propagating node. We can carry out the announcements in a different order while maintaining at each
node a suitable MV/D list for the announcements seen thus far. However in this case deletions can occur
from an MV/D list. Deletions occur when a node appears on the MV/D list of , but another node that
is at least as close to as and has smaller rank than makes an announcement later than . When this
happens has to remove from its MV/D list and insert instead. Since propagated the rank of to its
neighbors upon receiving it we can no longer charge each message to an item in the MV/D list of (that
ended up without ).

As in the case when no deletions could occur, each time node inserts a new pair into its MV/D list it
has to distribute the corresponding announcement further. An announcement that does not affect the MV/D
list of is truncated by . Note also that the content of the MV/D list at any point depends only on the set of
nodes that made announcements so far (not on their order), and the expected length of the list is logarithmic
in the number of nodes that have previously announced. Hence, the expected amount of storage at each node
is logarithmic regardless of the order in which announcements are made.

The following lemma proves that if nodes make their announcements in a random order (independent
of the ranks and inter-node distances), we get only a logarithmic increase in the number of messages. Ran-
dom order is relatively easy to achieve in a distributed system. The proof bounds the expected number of
insertions to the MV/D list of any node.

Lemma 4.2 When nodes announce their ranks in a random order, the expected number of announcements
that a node sends is , where is the number of nodes with value .

Proof. Consider an arbitrary node and let be the node of the th smallest distance from (assume that
by arbitrary tie breaking all distances are distinct). We compute the probability, over the random selection
of ranks and announcement order, that gets on the MV/D list of when makes an announcement. Node
gets on the MV/D list of if and only if no node that is closer to than has both rank smaller than and

makes an announcement before the node .
For all ( ), the probability that exactly of the nodes that are closer to than
have ranks smaller than the rank of , is equal to (think of the ranks of these nodes as a random

permutation, then is as likely to be in any position in the permutation). Suppose that of the nodes closer
to than have ranks smaller than the rank of . Since the order of announcements (induced on these the

nodes with ranks equal or smaller than ’s) is a random permutation, the probability that none of these
nodes make its announcement before does, is exactly .
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Combining the above, we obtain that the probability that , the th closest node to appears on the
MV/D list of is equal to

where is the ’th Harmonic number.
Clearly, the sum over all nodes of the probability that the node appears on the MV/D list of bounds

that expected number of nodes that get on the MV/D list of during the process. That is, the expected size
of the list is

To see the last claim observe that

(Since the inner sum is always a constant with value approximately 1.)
Node sends the announcement that it gets only if this announcement gets on its MV/D list when it

arrives. So we obtain that the expected number of announcements that sends is .

As for Lemma 4.1, Lemma 4.2 holds for binary values. To reformulate it for more general values we
have to replace by . (Recall that is the ratio between and .)
For -limited MV/D lists we can replace the by .

We next show that an arbitrary order of announcements can require much more communication.3 Con-
sider a path network with nodes appearing on the path from left to right. Suppose that the
nodes make their announcements in the order . When the node makes its announcement, it is
the closest node that made an announcement thus far to nodes . Thus (regardless of what the
rank of is), the announcement must reach all nodes with . Therefore, this order causes
messages to go through most nodes. Observe that even though communication is large, the expected size of
the MV/D list at any given point in time is logarithmic (the analysis holds since ranks are independent of
location).

When announcements are made in arbitrary order but there are only distinct distances, we can
derive a tighter bound. Clearly there cannot be more than one element of each particular distance at any
particular time on a single MV/D list. Since the ranks are independent of the order of announcements, it
is easy to see that the expected total number of elements of each particular distance that appear on the list
at any point during the computation is . The number of different distances is small if the diameter
is small or if distances are discretized into a small number of buckets.4 Table 1 summarizes the storage (in
terms of number of elements on the MV/D list) and communication (in terms of number of announcements
reaching a node) using different orders of announcements. Experimental results on comparing the different
orders of announcements are given in Section 12.

3Since ranks are random any order which is fixed before the ranks are drawn would define a random permutation of the ranks.
Hence by arbitrary order we refer to an order that may depend on the location.

4If we are interested in polynomial decay, then distances can be discretized into a logarithmic number of buckets while intro-
ducing only a small relative error (all distances that are within a factor of of each other can be considered equal).
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Announcement order storage communication
Ordered
Random
Arbitrary or

Table 1: The per-node storage and communication bounds for an MV/D list computation. The communi-
cation is the number of announcements reaching a node (Each announcement message consists of distance
and rank and is typically of logarithmic size.) The storage is in terms of number of elements (where each
element is a distance-rank pair, and possibly item identifier). When nodes contain multiple items with ar-
bitrary values, the in these bounds should be replaced by . If we restrict our applications to -limited
decay functions, then and can be replaced by and , respectively. We do not count here messages
that may be required to compute shortest path trees.

4.3 MV/D lists extensions

-min MV/D lists In some settings one would use the smallest ranks in a single rank assignment rather
than the smallest rank in different assignments [6]. It is easy to extend the notion of MV/D lists to this
setting and to extend our analysis. We can expect a -fold increase in storage (for the size of the lists) and in
communication but the basics of the truncated BFS or truncated shortest-path computation and the effects
of the announcement orders are the same as for the minimum rank computation.

Hashed rank values Hashed values instead of random ranks are used for aggregations over distinct items.
Specifically, work on distinct counting used min-wise independent permutations [4, 25] or the location of
the least significant bit in a hashed value [16]. It is easy to see that MV/D lists can be constructed for these
values as well and will allow us to represent the same aggregates over neighborhoods or windows. Since
rank values do not need to be random for the truncated search process to be correct, it also works correctly
for these ranks. The analysis of the announcement orders extends using the properties of the min-hash
values.

MV/D lists over Reverse Nearest Neighbor (RNN) sets MV/D lists are defined over neighborhoods.
Suppose now that there is a subset of nodes that are “servers.” Each node is interested in obtaining aggregates
over the set of items for which it would be the closest server if it is nominated to be a server. For this purpose
we use a modified announcement process: each item is aware of the distance of its closest server and the
announcement process stops at that distance. It is not hard to see that the resulting MV/D lists at each node
are obtained with respect to the RNN set of the node. If the MV/D list computations in our algorithms are
replaced by RNN MV/D list computations, then the respective resulting aggregation is performed over the
RNN sets.

5 Random Sampling
We start with the simpler problem of computing, for each node, a summary that would allow it to obtain,
for each , an item selected uniformly at random from its -neighborhood. (Dependencies between selec-
tion for different and different locations are allowed). This can be performed using a single MV/D lists
computation: Each item computes a random rank for itself, and an MV/D list is computed for each node.
For each , all items in the -neighborhood are equally likely to have the minimum rank. Thus, the
minimum ranked item constitutes a uniform random sample from the -neighborhood. More generally, a
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random sample of size can be obtained either (for sampling with returns) by performing the above times
(using different MV/D lists), or more efficiently, (and for sampling without returns), by computing -min
MV/D lists which provide for each the -smallest ranked items in the -neighborhood. It is not hard to
modify our -min MV/D list algorithms to compute a -min MV/D list while incurring (a necessary) -fold
increase in storage and communication. With -min MV/D lists, an item is placed on the list and propagated
further if and only if there are at most other items which are at least as close and have smaller ranks.
If we are interested in performing weighted sampling according to some values , we use weighted ranks
in the MV/D list computation (with replacing in the bounds).

We next address the problem of obtaining samples with respect to an arbitrary decay function , where
the probability of an item to be drawn at location is proportional to its weight .

Let be a uniform random sample from the -neighborhood of . As argued above, (dependent)
samples for all can be obtained using a single MV/D lists computation. Let be the number of
items in the -neighborhood of , and be the number of items in the system. (We argue below
that we can use estimates of these values instead of the exact values.) For notational convenience we assume
integral distances and define for . We now consider a node and a decay function .

Lemma 5.1 The following process draws the item with probability :

Draw randomly according to , where

(Thus, is selected with probability proportional to .)

Return the sample .

Proof. This is a 2-stage sampling process, where in the first stage an “event” is drawn
according to the probability distribution . In the second stage, an item is drawn uniformly
at random from the items in the -neighborhood. That is item is drawn with probability if
DIST and with probability otherwise. This 2-stage sampling process is equivalent to draw-
ing according to the probability distribution where item is drawn with probability equal to .
Substituting according to the definitions of and we obtain that item is drawn with probability

DIST

DIST

DIST

The nodes use estimates instead of the (unavailable) exact values . We can obtain estimates such
that the relative error is small with very high probability, that is, for . When
a node uses estimates we have but . Both the numerator and

denominator of are within relative error from the respective quantities for , thus for we have
. Therefore,
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Thus, the probability that an item is drawn, is in the range . This approximation is
sufficient for most applications of random sampling, including approximate median. We remark that the
above derivation easily extends to weighted sampling where node wants to draw item with probability
proportional to . In this case we define instead of using the number of items in a neighborhood
, using the sum of weights over items in the -neighborhood. Furthermore, within an -neighborhood

we perform a weighted sampling according to the values of the items in this neighborhood.

6 Approximate Norms (for )
The data stream version of the problem [12] is as follows: There is an underlying dimensional vector.
Each item consists of a pair , where is a coordinate and is an increment to
the th dimension of the underlying vector. Every window represents a vector, defined by applying all
the items in the window to the vector. The norm of that vector is given by

where is the sum of the increment values of all items where , obtained in the last time
units. The goal is to efficiently maintain an approximate value of using storage that is significantly
smaller than the dimension . Datar et al [12] showed that any constant relative error and confidence can be
obtained using storage (where is the maximum window size
we would like to support).

We recall the definition of the problem in the spatial setting that was given in Section 2.1. Each item
is an update of a coordinate of a -dimensional vector and is specified by a triplet . The value

specifies the coordinate which this item updates. The value is the
amount by which we increment the target coordinate, and is the item’s location. The -dimensional
vector V associated with location and a decay function , is then defined by the coordinate
values

V

Our techniques combined with Indyk’s allow to obtain, using communication per node, at each location
, a summary of size , such that for any decay function , the node can obtain an approximate value
of V (the norm of V ).

Observe that for , all coordinates can be aggregated together and the problem reduces to the
decaying sum problem. For , clearly, an approximate value of each coordinate of the vectorV can
be obtained by computing a spatially decaying sum over the update values associated with that coordinate.
An approximate value of the norm can be obtained from these estimates. This requires, however, applying
the decaying sum computation times, which imposes a factor increase in communication. The goal again
is to significantly reduce the dependence on .

We briefly describe Indyk’s sketching technique and then explain how to apply it in our setting. The
simplified sketching algorithm works as follows. For some fixed value , which depends on the
desired accuracy and confidence, the algorithm uses independent random variables (where
and ) which are drawn from some distribution that depends on (the parameter of the norm).
Each node has to have access to these numbers or be able to generate them. For details of how this common
knowledge could be obtained see [26].
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For each , each node then computes locally from its items a value

We then perform decaying sum computations using the values ( ). The estimated norm
at each node can then be computed from these sums according to Indyk’s method (the computation depends
on the norm parameter ).

7 Distinct Elements
The problem of distinct elements is to (approximately) count the number of distinct values occurring in
neighborhoods of each node. This can be performed using an NH-summary computation based on a variant
of MV/D lists. The key point here is to draw the ranks such that all items with identical values obtain the
same rank, while other crucial properties of the ranks are preserved. That is ranks of distinct values should be
independent and identically distributed. A node can obtain such a rank by applying a random hash function
(same function across all nodes) to the item’s identifier. If we know the distribution of the hashed values, we
can map them to pseudo random samples from a desired distribution (say the Exponentially distribution). As
with random ranks, we can use several MV/D list computations to obtain an NH-summary that can estimate
the number of distinct values in each neighborhood with high probability. (This probability is now over
the choice of the hash function.) If we used Exponential pseudo random samples, we can apply the same
estimator we used for Exponential random ranks to determine the number of distinct item.

This also applies to the weighted version of the problem where we estimate the weight of distinct items.
The analysis is essentially as in [6] if we assume availability of hash functions with perfect random proper-
ties. Fortunately, however, the much weaker randomness assumptions of min-wise independence typically
suffice [4, 25]. (Counting distinct elements in data stream using min-wise hash functions was studied, eg,
by [21, 3].) We also note that the Flajolet Martin [16] distinct counting approach can be used in this frame-
work: we chose the rank of an item to be the location of the least significant bit (technically, with this
definition we do max-rank). We then apply the Flajolet-Martin estimator to estimate the count.

To obtain a random distinct value we can simply take the value that had the minimum hashed rank. We
can also obtain the multiplicity of a random distinct value, as follows. We first discuss small multiplicities.
Multiplicities up to can be obtained exactly with factor on communication: when computing the
MV/D lists, we continue to propagate all items with rank equal to the current minimum rank value (at each
particular distance). To do so, we may need to record up to identifiers at each node, and pay an additional
factor of on communication. For high multiplicities, we can reduce the overhead to factor and
obtain approximate multiplicities as follows. Consider each item as having a (hashed by value) rank and an
additional random rank. For each minimum 1st rank item we consider the second rank and propagate only
if smaller. These second ranks allow us to estimate the multiplicity of that value (we need several such 2nd
ranks for better accuracy.). Since we don’t know the multiplicity of the random element in advance, we can
apply the two approaches simultaneously and stop the exact counting when we reach some cutoff value of
.

8 Euclidean MV/D Lists
Up till now, we considered only edge-length metrics on the underlying network. We now turn our attention
to spatially-decaying aggregation with respect to the metric on the Euclidean plane, both when the data
is centrally processed and in a distributed setting. MV/D list computation is the basic ingredient in our
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aggregation algorithms; substituting it with a Euclidean MV/D list computation yields algorithms for the
Euclidean version of these aggregates.

In the Euclidean MV/D list problem, item locations are points in the Euclidean plane. Items have ranks
and each point in the plane has an MV/D list defined according to the Euclidean metric. The goal is for each
node to obtain the MV/D list for its location or more generally, to construct a data structure that would allow
us to efficiently obtain the MV/D list of any query point.

8.1 Centralized setting

The centralized version of the problem amounts to computing and performing point location in a particular
collection of Voronoi regions (taken from different diagrams) as stated in the following lemma. The proof
of this lemma is immediate from the definitions.

Lemma 8.1 Let items be indexed in increasing rank order . Let be the Voronoi region of the
location of item in the Voronoi diagram defined by the locations of . The MV/D list of a query
point consists of all such that the point resides in the region .

Moreover, it is not hard to see that the expected size of the MV/D list associated with a point is logarithmic
(the arguments used in [6] for edge metrics carry over).

Our centralized Euclidean MV/D list computation can be stated in terms of constructing and querying
incremental Voronoi diagram under a random order of point insertions. The goal is to find the closest
neighbor for a query point not only in the final diagram, but with respect to all prefixes of the insertion
order. A paper by Guibas et al [24] constructs an appropriate data structure for this task. The size of the data
structure is linear, it can be built in expected time, and the expected query time is .

8.2 Distributed setting

In the distributed setting, data items reside at nodes connected by an underlying network. Generally, how-
ever, the Euclidean metric may not be representable as an edge metric on the network (unless the network is
a full mesh or very degenerate like a path network that lies on a line). We construct an example that shows
that a Euclidean MV/D list computation may necessitate quadratic communication: Consider a U-shaped
path network, where the nodes coordinates in the Euclidean plane are and (for );
the network edges are , , and (for ).
Items are present at nodes (for ). The closest item to a node is the one residing
on node , thus, this particular item is present on the MV/D list of and must be communicated
through all nodes and for .

It turns out that for any , all announcements from nodes for must flow through
the nodes and . We thus obtain that during an MV/D list computation, an average
announcement messages must traverse a node.

This bad example exploits the mismatch between the network topology and the Euclidean metric: even
though the size of the MV/D list of each node is logarithmic, nodes must pass on information through the
network that is not relevant to their own MV/D list. On some networks, in particular on grids, it is possible
to efficiently compute Euclidean MV/D lists distributively, with nearly linear total communication.

Grid networks

Consider a grid network in the plane with nodes , where , and . We assume
that each node holds a binary data item, and denote by the data items when sorted by their
corresponding ranks. We associate the grid square (cell) defined by the points with the
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node . Each node builds a data structure that allows it to produce the MV/D list of any query point in
its cell.

Consider the Voronoi regions as in Lemma 8.1. That is region is the Voronoi region of
in the Voronoi diagram defined by the locations of . In order to determine the Euclidean MV/D
list for all query points that lie within its grid cell, it is sufficient (and necessary) that a node obtains the list
of items for which the region intersects its cell. For that purpose we define the following announcing
process.
When a node makes an announcement, a receiving node checks if it “updates” the current list of any point
in its cell, if it does, it propagates the message to all its neighbors.
Since each region is connected, the set of grid cells which it intersects is connected, and therefore this
propagation scheme guarantees that each announcement reaches all cells which intersect the corresponding
region.

We now analyze the communication out of each node. In the following Theorem we establish that the
average number of regions that intersect a particular grid cell is logarithmic. It then follows that according
to the propagation scheme defined above each node delivers a logarithmic number of messages on average.

Theorem 1 The average, over grid cells, of the number of regions (out of ) that intersects the grid
cell is logarithmic.

Note, however, that there can be cells that intersect a linear number of regions, and communication for the
respective nodes is linear. The proof of Theorem 1 follows from the following two lemma.

Lemma 8.2 The number of grid cells that are intersected by a bounded contiguous region is bounded by
a constant times the sum of the circumference and area of the region (measured by grid units and squared
grid units respectively).

Proof. We separately account for grid cells that are fully or partially contained in the region. The total
number of grid cells that are fully contained in the region is bounded by the area of the region. Any cell
which is partially contained in the region must intersect the circumference of the region. Consider a point
on the circumference and the grid cell it lies in. The closest point on the circumference that does not belong
to the grid cell or any (of its 8) neighboring cells must be of distance at least 1 grid unit away, and thus at
least 1 grid unit length away along the circumference. Therefore, the total number of grid cells touched by
the circumference is at most a constant times its length.

Lemma 8.3 Consider a Voronoi diagram defined by a set of points on the grid. Consider a region in that
diagram. (We assume wlog that regions are finite, as we limit them by the area of the grid.) The ratio of
circumference to area of the region (measured in grid units and squared grid units, respectively) is at most
4.

Proof. Consider a region that is closest to a point (see Figure 2). Consider now a triangulation of
formed by connecting to each of the vertices of (presented in clockwise order). The

area of is the sum, over , of the areas of the triangles (indices are modulo ). The
circumference of is the sum of the lengths of the segments between and .

Let be the height of the triangle (The distance between and the line defined by and .)
The area of the triangle is , where is the length of the segment connecting and .

By definition of Voronoi regions, the line defined by and is of equal distance from two grid
points, one on each side of the line. Since the distance between any two grid points is at least one grid unit,
the length of is at least half a grid unit.
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Figure 2: Voronoi diagram defined by a subset of points in a grid. A voronoi region for a point and the
respective triangulation as in Lemma 8.3
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We obtain that the ratio of the circumference of to its area is

(We substitute to obtain the last inequality.) Note that the ratio of is tight: If all grid points are
used then each Voronoi region is a grid-unit square, with circumference of and area of .

An immediate corollary of Lemma 8.2 and Lemma 8.3 bounds the number of cells intersecting a region
by the area of the region.

Corollary 8.4 The number of grid cells that are intersected by a Voronoi region defined by points on a grid
is bounded by a constant times the area of the region (measured by squared grid units).

The corollary, combined with the following lemma, concludes the proof of Theorem 1.

Lemma 8.5 The expected total area of the regions is grid squares. Furthermore,
the expected number of edges defining a region is constant.

Proof. We first show that the expected area of is . Since the ranks are random any one of the items
is as likely to be the th one. The total area of the regions of the Voronoi diagram defined by
is since they form a partition of the whole grid which consists of cells. Thus, the expected

area of a region selected uniformly at random is . Using the above, we obtain that the expected combined
area of the regions is . Also note that the total number of edges in the diagram is
linear, and thus, the expected number of edges defining the cell is constant.

For random order of announcements, each vertex of the grid propagates the message announced by
an item to its neighbors if the Voronoi region of in the Voronoi diagram of points , , that
announced before intersects its cell. Let denote now the Voronoi region of in the diagram define by
the subset of that announced before .

Fix a point in the subset of the plane covered by the grid. An argument as in the proof of Lemma 4.2
shows that the number of regions containing is . Indeed, contains if no point , is
closer to than and makes its announcement before . We order the points according to their distance
from . Since ranks are independent of the distances the probability that among precede
in the order of the distance from is for every . Assuming indeed points , ,
precede in this order the probability that none makes its announcement before is . We can now
complete this argument as in the proof of Lemma 4.2.

The fact that an arbitrary point intersect regions on average, implies that the sum of the
areas of all regions is . This observation combined with Corollary 8.4 implies that the average
number of announcements that a node would deliver under a random order of announcements is .

9 Lower Bounds
Consider a problem instance of computing some time-decaying aggregate over time units where item
of value is observed at time . Also consider a directed path network of size , where each edge
is of unit length and item of value is present at node . Suppose that the same spatial-aggregate
function and the same decay function apply in both settings (decay over elapsed time units is equal to
decay over distance ). The aggregate value at node in the spatial-decay setting is equal to the value at
time in the time-decay setting. Then, we can obtain an algorithm for the time-decay problem from an
algorithm to the spatial-decay setting and vice versa. The size of a summary that is propagated from time
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to time in order to make sure we can know the value of the aggregate in later times corresponds to
the communication along the edge (and the storage at node ) and vice versa. Thus, known lower
bounds on the space required to maintain time-decaying aggregates together with the reduction described
above, imply lower bounds on the number of bits that have to be sent along edges when performing the
respective spatially-decaying aggregation on path networks.

We list some examples of such lower bounds. Datar et. al. [12] showed that bits are needed
to maintain ( approximate) time-decaying sums over a binary stream where is a sliding window
of size . Their construction in fact can be adjusted to show that has to be kept during a
fraction of the entire time. This implies that when computing spatially-decaying sums for BALL
at least bits must traverse a fraction of the edges. Similarly, a lower bound of bits
on per-edge communication for computing (approximate) polynomial and exponential spatially-decaying
sums over items (of value at most polynomial in ) follows from the corresponding lower bounds for
polynomial or exponential time-decaying sums that were provided in [9]. Linear ( bits) lower bound
on the per-edge communication needed to obtain the minimum value of an item in the -neighborhood of
each node follows from the linear lower bounds on space in the sliding-window model [12]. Note that in
contrast to the sliding window model computing the global (non-decaying) minimum over a data stream
is an easy problem, and similarly, the global minimum over a network can be computed using logarithmic
per-node communication.

10 Exponential Histograms for Spatial Decay on Grid networks
We consider a different algorithm for BALL spatially-decaying sum computation. The algorithm applies
Exponential-Histograms (EH) which is a data structure that was developed in [12] for sliding window time-
decay (which can be viewed as the 1-dimensional version of the problem we consider here).

The extension of the EH technique seems to be specific to grid networks, we obtain approximate sums
(for a specific value of ) on fixed-dimensional grid networks under the metric.5 We assume that the grid
is undirected (distances are symmetric). The approach easily extends to directed grids, where all “parallel”
edges are directed the same way.

One limitation of the -dimensional (for ) EH solution compared to the 1-dimensional EHs [12]
and compared to our general solution in Section 3 is that each “run” applies only to a specific value of .
EH in 1-dimension, and our general solution provide approximate BALL decayed sums for all .
The advantages of this algorithm over the general method discussed earlier are its tighter dependence on
of and its approximation guarantees (EH is guaranteed to give -approximate answers
whereas the MV/D lists based technique has confidence bounds.)

The EH data structure processes a stream of values and can provide estimates for the sum of the
recent values. In order to answer queries for any the EH needs space assuming

values are polynomial in .
We state the algorithm for 2-dimensional grids, and sketch the fairly straightforward generalization to

higher dimensions. Our algorithm uses the EH data structure as a black box and computes an approximation
of , the sum of the values of the nodes , where . The BALL
approximations for undirected grids can then be obtained by performing this operation symmetrically on the
other quadrants and summing the results.6 The algorithm is as follows.

5We remark that the metric does not strictly fall in our model, since this metric is not an edge-length metric on the grid,
whereas the solution for general spatial decay in Section 3 was for edge-length metrics. Note however that on the grid can
be treated as an edge-length metric if we add the diagonals and make the lengths of all edges the same. Communication across
diagonals can then be emulated by transferring the message on 2 corresponding edges.

6In a -dimensional grid for each node we obtain an approximate sum of all values present at nodes ,
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For each , propagate an EH for sliding window of size through . As a result,
each node will have an approximate value of , the sum of values of the nodes

.

For each propagate an EH for sliding window of size of the nodes using
the value for each node . As a result, each node will have an approximate value
for , the sum of values of the nodes , where .

The EH method requires bits for maintaining a sliding window of length (assuming the
values are of polynomial size in ) [12]. Our algorithm for -dimensional grids thus utilizes
bits of communication per node (for each of the quadrants).

We sketch how the EH based algorithms can be extended to the metric. Under the metric, the
-neighborhood of a grid node is a diamond shaped region centered at . We can treat the set of nodes in
this diamond shaped region as two squared regions each in a different virtual grid. One virtual grid consists
of nodes with even sum of coordinates and the other consists of nodes with an odd sum of coordinates. The
edges of the virtual grid are diagonals of cells on our original grid that connect between consecutive points
of the virtual grids. The original grid can emulate communication on each virtual grid with constant factor
overhead, basically, communication with a neighbor is replaced by communication within a 2-neighborhood.

11 Decay Across Space and Time
We extend our model to aggregation over items that arrive in different locations and at different times. We
use , and to denote the value, time, and location of the th item. There are two different decay
functions: captures decay as a function of distance and captures decay as a function of elapsed time.
The weight of an item with , at time as viewed from location is DIST .
The decaying sum at location at time is

DIST

We measure performance by both communication per time unit and the amount of storage per node, so that
at any time and at any location we can obtain an approximate value of the respective aggregate.

We allow for a tolerance of time units in the interpretation of time stamps. This is necessary, since
otherwise every single item that arrives at a distinct time must be broadcasted to the whole system, since
it constitutes the most recent arrival. With tolerance, we can use plain spatial aggregations for all items
arriving within time units (as they are treated as having the same time stamp). For efficiency, we would
further like the order of announcements within each period to be unrelated to location, which can be
achieved by adding random delays to item arrival times.

We next consider storage. Storing a spatial summary for each period can be space consuming. To
support queries of decaying sum for all (time and distance) decay functions, we should be able to obtain, for
each and , approximate sum of values of all items that occurred within the last -time-periods and
within distance . Unfortunately, the size of such a “2-d NH-summary” in general may have to be linear in
(the smaller of) the number of distinct distances from our location and the number of distinct time units as
the following example shows.

Consider a path network with nodes and items (of value either 0 or 1) where item
occurs at node at time , for . The times are increasing such that

where for .
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(items that are further from occur later in time). Consider the information that needs to be stored at at
some time (that is later than all item arrival times). Each item has a unique time-distance neighborhood in
which it lies: the item is the only item within the -recent time window and -neighborhood of
. Thus, in order to be able to obtain estimates of BALL for all possible values of and , we may need

storage that is linear in (the smaller of) the number of distinct distances from our location and the number
of distinct time units.

Storage requirements can be reduced with some restrictions: Observe that for each set of items occurring
at the same distance (possibly at different times), we can maintain a single time-window summary (using
Exponential Histogram for example). Thus, if distances are discretized into meaningful levels, it suffices
to maintain time-window summaries. A second observation is that if we restrict ourselves to a fixed
spatial decay function at each node then it suffices that each node maintains a single time-window summary.
The information incorporated in the summary in each time unit is a single numeric value: an approximate
spatially decaying sum

DIST

obtained using the NH-summary (MV/D lists) compiled for the current period.

12 Experimental Evaluation
For the simulation part of our evaluation we used terrestrial air temperature and precipitation data. The data
was provided for grid points in half-degree spacings on the terrestrial grid. For each grid point it included
the mean annual temperature and precipitation (over the time period 1950 to 1999) [5]. We treated the grid
as a network and used the distance on degrees. Overall, our grid included 85,794 points.

We counted the number of messages per node (with each message containing a rank and the location of
the announcing node) for computing a single ( -limited) MV/D list and the size of this list, for the three
orders of announcements considered in Section 4: random order of announcements, arbitrary order (where
the announcements follow a lexicographic order on the longitude, latitude coordinates), and optimal order
(increasing rank). When multiple lists are used, the total communication is proportional to the number of
lists. We looked at the size of the lists and number of messages for precipitation, temperature, and size
values. Recall that although the communication depends on the announcement order, the size and content
of the MV/D lists depend only on the ranks.

Table 2 lists the average number of messages per node under each order. Figure 3 shows the cumulative
distributions. On this 86K node network, random order required about 6-7 times more messages than optimal
and arbitrary order about 40 times more messages than optimal. This suggests that a combined random-
minimum approach that biases earlier announcements to lower ranks can improve on the performance of
random order. Theory provides precise expressions for the distribution of the size of the MV/D lists and for
the accuracy of estimates using a certain number of MV/D lists when items’ values are binary (this is the case
when counting or computing sizes [6, 7]). For arbitrary values we provided in Section 4 a worst-case bound
in terms of , which depends on the ratio of the weights of the largest to smallest values. Interestingly,
even though there is large variance in precipitation values, the size of the corresponding MV/D lists was
only slightly larger than with binary values (11.6 versus 10.7).

We next compare our methods, that produce estimates based on MV/D lists, to the naive method, which
produces exact values. The naive algorithm sends every data point to all nodes that it influences. Thus,
the communication and storage at each node are proportional to the number of data points that influence
it. The influence sets depends on the decay function. For general decay functions it involves 85793 data
points from all peer nodes. For -limited decay functions, the influence set contains only items in the -
neighborhood. Our method produces estimates with quality that increases with the number of MV/D lists.
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optimal random arbitrary
precipitation 11.6 69 409
temperature 10.7 69 404
size 10.7 71 408

Table 2: Average number of messages to obtain an MV/D list under optimal, arbitrary, and random order of
announcements, for precipitation levels, temperature, and number of sensors.
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Figure 3: Cumulative number of messages per node needed for computing an MV/D list for precipitation,
size, and temperature.
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The expected size of each list is logarithmic in the influence set. The NH-summary computed from the
lists has size which is at most the sum of sizes of the lists. It can provide estimated aggregate values
for any decay function. The communication depends on the order of announcements, and as shown in
Section 3, is logarithmic for optimal order and log-squared for random order. Thus, asymptotically there is
an exponential gap in communication and storage between the naive exact method and our MV/D list based
approximation.

We drew ranks from the Exponential distribution with parameter , where was the value (for sizes val-
ues were binary; for temperatures we added a value of 60 to obtain nonnegative values). The NH-summary
contained a list of distance intervals, and for each distance, we used the unbiased estimate ,
where was the minimum rank according to MV/D list for the corresponding distance. Figure 4 shows
the distribution of the ratio of the estimate value to the exact aggregate values. The approximate aggregate
values were produced using an NH-summary that constituted of 10, 20, 50, or 100 MV/D lists. The figure
shows, in agreement with analysis, that the error decreases with the number of lists, and that its distribution
is the same for different BALL functions (it does not depend on neighborhood size). The aggregate for the
inverse-squared decay function DIST was calculated by applying Lemma 3.1 to the NH-summary.
This estimate is more accurate than over neighborhoods since it combines estimates over different neigh-
borhoods (estimation errors for different neighborhood are only partially dependent). Figure 5 shows the
number of messages per node for -limited aggregation as a function of . For the naive method and for
the approximate method using lists. The communication required with the naive exact com-
putation grows much faster than with the approximate methods. Thus, exact computation is favorable for
smaller or when the number of MV/D lists needed to reach the precision that an application requires makes
the communication cost comparable to that of the exact computation. The average number of influencing
nodes (and per-node average communication cost for the naive exact computation) is 56.1 for 2.5 degree
neighborhood, 192.3 for 5 degree neighborhood, and 662.9 for 10 degree neighborhood. For general decay
functions (such as inverse-square of the distance), the influence set of each point contains all other (85793)
nodes. The figure shows that when using 20 or fewer MV/D lists, which is at least 10 degrees, and random
order of announcements, the approximate method uses fewer messages than the naive method; with optimal
order of announcements, the estimation method uses fewer messages even with starting at -degrees. For
smooth decay functions, the estimation method even with hundreds of MV/D lists is considerably more
efficient than the naive method.

13 Conclusion and Open Problems
We introduced a model for spatially decaying aggregation, which is motivated by emerging applications
including p2p and sensor networks where data is associated with its location and its relevance decays with
distance. We developed basic techniques and efficient algorithms for some fundamental aggregate functions.

An interesting question is whether and when the problem of producing general summaries (that is,
applicable to any decay function) is harder than tailored solutions to specific functions: for time-decay on
streams, it is known that the decaying sum problem for particular decay functions, such as Exponential and
Polynomial decay, can be tracked more efficiently than general decay [9]. We noted that restricting the decay
function seems to allow for better storage bounds for combined spatial and time decay (see Section 11) and
for EHs on grids (see Section 10). Another natural set of open problems is to close gaps between our upper
bounds and lower bounds carried over from the time-decay model.
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Figure 4: Histogram of the distribution of the ratio of the estimate we obtain to the exact quantity for
precipitation levels for BALL decay on 2.5, 5, and 10 degree neighborhoods (denoted in the figures captions
by “ball5”, “ball10”, and “ball20”, respectively) and for DIST decay (denoted by “invD2”).
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